D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
opt
/
alt
/
python37
/
lib64
/
python3.7
/
site-packages
/
numpy
/
lib
/
tests
/
Filename :
test_shape_base.py
back
Copy
from __future__ import division, absolute_import, print_function import numpy as np import warnings from numpy.lib.shape_base import ( apply_along_axis, apply_over_axes, array_split, split, hsplit, dsplit, vsplit, dstack, column_stack, kron, tile, expand_dims, ) from numpy.testing import ( run_module_suite, TestCase, assert_, assert_equal, assert_array_equal, assert_raises, assert_warns ) class TestApplyAlongAxis(TestCase): def test_simple(self): a = np.ones((20, 10), 'd') assert_array_equal( apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1])) def test_simple101(self, level=11): a = np.ones((10, 101), 'd') assert_array_equal( apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1])) def test_3d(self): a = np.arange(27).reshape((3, 3, 3)) assert_array_equal(apply_along_axis(np.sum, 0, a), [[27, 30, 33], [36, 39, 42], [45, 48, 51]]) def test_preserve_subclass(self): # this test is particularly malicious because matrix # refuses to become 1d def double(row): return row * 2 m = np.matrix([[0, 1], [2, 3]]) expected = np.matrix([[0, 2], [4, 6]]) result = apply_along_axis(double, 0, m) assert_(isinstance(result, np.matrix)) assert_array_equal(result, expected) result = apply_along_axis(double, 1, m) assert_(isinstance(result, np.matrix)) assert_array_equal(result, expected) def test_subclass(self): class MinimalSubclass(np.ndarray): data = 1 def minimal_function(array): return array.data a = np.zeros((6, 3)).view(MinimalSubclass) assert_array_equal( apply_along_axis(minimal_function, 0, a), np.array([1, 1, 1]) ) def test_scalar_array(self, cls=np.ndarray): a = np.ones((6, 3)).view(cls) res = apply_along_axis(np.sum, 0, a) assert_(isinstance(res, cls)) assert_array_equal(res, np.array([6, 6, 6]).view(cls)) def test_0d_array(self, cls=np.ndarray): def sum_to_0d(x): """ Sum x, returning a 0d array of the same class """ assert_equal(x.ndim, 1) return np.squeeze(np.sum(x, keepdims=True)) a = np.ones((6, 3)).view(cls) res = apply_along_axis(sum_to_0d, 0, a) assert_(isinstance(res, cls)) assert_array_equal(res, np.array([6, 6, 6]).view(cls)) res = apply_along_axis(sum_to_0d, 1, a) assert_(isinstance(res, cls)) assert_array_equal(res, np.array([3, 3, 3, 3, 3, 3]).view(cls)) def test_axis_insertion(self, cls=np.ndarray): def f1to2(x): """produces an assymmetric non-square matrix from x""" assert_equal(x.ndim, 1) return (x[::-1] * x[1:,None]).view(cls) a2d = np.arange(6*3).reshape((6, 3)) # 2d insertion along first axis actual = apply_along_axis(f1to2, 0, a2d) expected = np.stack([ f1to2(a2d[:,i]) for i in range(a2d.shape[1]) ], axis=-1).view(cls) assert_equal(type(actual), type(expected)) assert_equal(actual, expected) # 2d insertion along last axis actual = apply_along_axis(f1to2, 1, a2d) expected = np.stack([ f1to2(a2d[i,:]) for i in range(a2d.shape[0]) ], axis=0).view(cls) assert_equal(type(actual), type(expected)) assert_equal(actual, expected) # 3d insertion along middle axis a3d = np.arange(6*5*3).reshape((6, 5, 3)) actual = apply_along_axis(f1to2, 1, a3d) expected = np.stack([ np.stack([ f1to2(a3d[i,:,j]) for i in range(a3d.shape[0]) ], axis=0) for j in range(a3d.shape[2]) ], axis=-1).view(cls) assert_equal(type(actual), type(expected)) assert_equal(actual, expected) def test_subclass_preservation(self): class MinimalSubclass(np.ndarray): pass self.test_scalar_array(MinimalSubclass) self.test_0d_array(MinimalSubclass) self.test_axis_insertion(MinimalSubclass) def test_axis_insertion_ma(self): def f1to2(x): """produces an assymmetric non-square matrix from x""" assert_equal(x.ndim, 1) res = x[::-1] * x[1:,None] return np.ma.masked_where(res%5==0, res) a = np.arange(6*3).reshape((6, 3)) res = apply_along_axis(f1to2, 0, a) assert_(isinstance(res, np.ma.masked_array)) assert_equal(res.ndim, 3) assert_array_equal(res[:,:,0].mask, f1to2(a[:,0]).mask) assert_array_equal(res[:,:,1].mask, f1to2(a[:,1]).mask) assert_array_equal(res[:,:,2].mask, f1to2(a[:,2]).mask) def test_tuple_func1d(self): def sample_1d(x): return x[1], x[0] res = np.apply_along_axis(sample_1d, 1, np.array([[1, 2], [3, 4]])) assert_array_equal(res, np.array([[2, 1], [4, 3]])) def test_empty(self): # can't apply_along_axis when there's no chance to call the function def never_call(x): assert_(False) # should never be reached a = np.empty((0, 0)) assert_raises(ValueError, np.apply_along_axis, never_call, 0, a) assert_raises(ValueError, np.apply_along_axis, never_call, 1, a) # but it's sometimes ok with some non-zero dimensions def empty_to_1(x): assert_(len(x) == 0) return 1 a = np.empty((10, 0)) actual = np.apply_along_axis(empty_to_1, 1, a) assert_equal(actual, np.ones(10)) assert_raises(ValueError, np.apply_along_axis, empty_to_1, 0, a) def test_with_iterable_object(self): # from issue 5248 d = np.array([ [set([1, 11]), set([2, 22]), set([3, 33])], [set([4, 44]), set([5, 55]), set([6, 66])] ]) actual = np.apply_along_axis(lambda a: set.union(*a), 0, d) expected = np.array([{1, 11, 4, 44}, {2, 22, 5, 55}, {3, 33, 6, 66}]) assert_equal(actual, expected) # issue 8642 - assert_equal doesn't detect this! for i in np.ndindex(actual.shape): assert_equal(type(actual[i]), type(expected[i])) class TestApplyOverAxes(TestCase): def test_simple(self): a = np.arange(24).reshape(2, 3, 4) aoa_a = apply_over_axes(np.sum, a, [0, 2]) assert_array_equal(aoa_a, np.array([[[60], [92], [124]]])) class TestExpandDims(TestCase): def test_functionality(self): s = (2, 3, 4, 5) a = np.empty(s) for axis in range(-5, 4): b = expand_dims(a, axis) assert_(b.shape[axis] == 1) assert_(np.squeeze(b).shape == s) def test_deprecations(self): # 2017-05-17, 1.13.0 s = (2, 3, 4, 5) a = np.empty(s) with warnings.catch_warnings(): warnings.simplefilter("always") assert_warns(DeprecationWarning, expand_dims, a, -6) assert_warns(DeprecationWarning, expand_dims, a, 5) class TestArraySplit(TestCase): def test_integer_0_split(self): a = np.arange(10) assert_raises(ValueError, array_split, a, 0) def test_integer_split(self): a = np.arange(10) res = array_split(a, 1) desired = [np.arange(10)] compare_results(res, desired) res = array_split(a, 2) desired = [np.arange(5), np.arange(5, 10)] compare_results(res, desired) res = array_split(a, 3) desired = [np.arange(4), np.arange(4, 7), np.arange(7, 10)] compare_results(res, desired) res = array_split(a, 4) desired = [np.arange(3), np.arange(3, 6), np.arange(6, 8), np.arange(8, 10)] compare_results(res, desired) res = array_split(a, 5) desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6), np.arange(6, 8), np.arange(8, 10)] compare_results(res, desired) res = array_split(a, 6) desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6), np.arange(6, 8), np.arange(8, 9), np.arange(9, 10)] compare_results(res, desired) res = array_split(a, 7) desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6), np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)] compare_results(res, desired) res = array_split(a, 8) desired = [np.arange(2), np.arange(2, 4), np.arange(4, 5), np.arange(5, 6), np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)] compare_results(res, desired) res = array_split(a, 9) desired = [np.arange(2), np.arange(2, 3), np.arange(3, 4), np.arange(4, 5), np.arange(5, 6), np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)] compare_results(res, desired) res = array_split(a, 10) desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3), np.arange(3, 4), np.arange(4, 5), np.arange(5, 6), np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)] compare_results(res, desired) res = array_split(a, 11) desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3), np.arange(3, 4), np.arange(4, 5), np.arange(5, 6), np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), np.arange(9, 10), np.array([])] compare_results(res, desired) def test_integer_split_2D_rows(self): a = np.array([np.arange(10), np.arange(10)]) res = array_split(a, 3, axis=0) tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]), np.zeros((0, 10))] compare_results(res, tgt) assert_(a.dtype.type is res[-1].dtype.type) # Same thing for manual splits: res = array_split(a, [0, 1, 2], axis=0) tgt = [np.zeros((0, 10)), np.array([np.arange(10)]), np.array([np.arange(10)])] compare_results(res, tgt) assert_(a.dtype.type is res[-1].dtype.type) def test_integer_split_2D_cols(self): a = np.array([np.arange(10), np.arange(10)]) res = array_split(a, 3, axis=-1) desired = [np.array([np.arange(4), np.arange(4)]), np.array([np.arange(4, 7), np.arange(4, 7)]), np.array([np.arange(7, 10), np.arange(7, 10)])] compare_results(res, desired) def test_integer_split_2D_default(self): """ This will fail if we change default axis """ a = np.array([np.arange(10), np.arange(10)]) res = array_split(a, 3) tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]), np.zeros((0, 10))] compare_results(res, tgt) assert_(a.dtype.type is res[-1].dtype.type) # perhaps should check higher dimensions def test_index_split_simple(self): a = np.arange(10) indices = [1, 5, 7] res = array_split(a, indices, axis=-1) desired = [np.arange(0, 1), np.arange(1, 5), np.arange(5, 7), np.arange(7, 10)] compare_results(res, desired) def test_index_split_low_bound(self): a = np.arange(10) indices = [0, 5, 7] res = array_split(a, indices, axis=-1) desired = [np.array([]), np.arange(0, 5), np.arange(5, 7), np.arange(7, 10)] compare_results(res, desired) def test_index_split_high_bound(self): a = np.arange(10) indices = [0, 5, 7, 10, 12] res = array_split(a, indices, axis=-1) desired = [np.array([]), np.arange(0, 5), np.arange(5, 7), np.arange(7, 10), np.array([]), np.array([])] compare_results(res, desired) class TestSplit(TestCase): # The split function is essentially the same as array_split, # except that it test if splitting will result in an # equal split. Only test for this case. def test_equal_split(self): a = np.arange(10) res = split(a, 2) desired = [np.arange(5), np.arange(5, 10)] compare_results(res, desired) def test_unequal_split(self): a = np.arange(10) assert_raises(ValueError, split, a, 3) class TestColumnStack(TestCase): def test_non_iterable(self): assert_raises(TypeError, column_stack, 1) class TestDstack(TestCase): def test_non_iterable(self): assert_raises(TypeError, dstack, 1) def test_0D_array(self): a = np.array(1) b = np.array(2) res = dstack([a, b]) desired = np.array([[[1, 2]]]) assert_array_equal(res, desired) def test_1D_array(self): a = np.array([1]) b = np.array([2]) res = dstack([a, b]) desired = np.array([[[1, 2]]]) assert_array_equal(res, desired) def test_2D_array(self): a = np.array([[1], [2]]) b = np.array([[1], [2]]) res = dstack([a, b]) desired = np.array([[[1, 1]], [[2, 2, ]]]) assert_array_equal(res, desired) def test_2D_array2(self): a = np.array([1, 2]) b = np.array([1, 2]) res = dstack([a, b]) desired = np.array([[[1, 1], [2, 2]]]) assert_array_equal(res, desired) # array_split has more comprehensive test of splitting. # only do simple test on hsplit, vsplit, and dsplit class TestHsplit(TestCase): """Only testing for integer splits. """ def test_non_iterable(self): assert_raises(ValueError, hsplit, 1, 1) def test_0D_array(self): a = np.array(1) try: hsplit(a, 2) assert_(0) except ValueError: pass def test_1D_array(self): a = np.array([1, 2, 3, 4]) res = hsplit(a, 2) desired = [np.array([1, 2]), np.array([3, 4])] compare_results(res, desired) def test_2D_array(self): a = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) res = hsplit(a, 2) desired = [np.array([[1, 2], [1, 2]]), np.array([[3, 4], [3, 4]])] compare_results(res, desired) class TestVsplit(TestCase): """Only testing for integer splits. """ def test_non_iterable(self): assert_raises(ValueError, vsplit, 1, 1) def test_0D_array(self): a = np.array(1) assert_raises(ValueError, vsplit, a, 2) def test_1D_array(self): a = np.array([1, 2, 3, 4]) try: vsplit(a, 2) assert_(0) except ValueError: pass def test_2D_array(self): a = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) res = vsplit(a, 2) desired = [np.array([[1, 2, 3, 4]]), np.array([[1, 2, 3, 4]])] compare_results(res, desired) class TestDsplit(TestCase): # Only testing for integer splits. def test_non_iterable(self): assert_raises(ValueError, dsplit, 1, 1) def test_0D_array(self): a = np.array(1) assert_raises(ValueError, dsplit, a, 2) def test_1D_array(self): a = np.array([1, 2, 3, 4]) assert_raises(ValueError, dsplit, a, 2) def test_2D_array(self): a = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) try: dsplit(a, 2) assert_(0) except ValueError: pass def test_3D_array(self): a = np.array([[[1, 2, 3, 4], [1, 2, 3, 4]], [[1, 2, 3, 4], [1, 2, 3, 4]]]) res = dsplit(a, 2) desired = [np.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]]), np.array([[[3, 4], [3, 4]], [[3, 4], [3, 4]]])] compare_results(res, desired) class TestSqueeze(TestCase): def test_basic(self): from numpy.random import rand a = rand(20, 10, 10, 1, 1) b = rand(20, 1, 10, 1, 20) c = rand(1, 1, 20, 10) assert_array_equal(np.squeeze(a), np.reshape(a, (20, 10, 10))) assert_array_equal(np.squeeze(b), np.reshape(b, (20, 10, 20))) assert_array_equal(np.squeeze(c), np.reshape(c, (20, 10))) # Squeezing to 0-dim should still give an ndarray a = [[[1.5]]] res = np.squeeze(a) assert_equal(res, 1.5) assert_equal(res.ndim, 0) assert_equal(type(res), np.ndarray) class TestKron(TestCase): def test_return_type(self): a = np.ones([2, 2]) m = np.asmatrix(a) assert_equal(type(kron(a, a)), np.ndarray) assert_equal(type(kron(m, m)), np.matrix) assert_equal(type(kron(a, m)), np.matrix) assert_equal(type(kron(m, a)), np.matrix) class myarray(np.ndarray): __array_priority__ = 0.0 ma = myarray(a.shape, a.dtype, a.data) assert_equal(type(kron(a, a)), np.ndarray) assert_equal(type(kron(ma, ma)), myarray) assert_equal(type(kron(a, ma)), np.ndarray) assert_equal(type(kron(ma, a)), myarray) class TestTile(TestCase): def test_basic(self): a = np.array([0, 1, 2]) b = [[1, 2], [3, 4]] assert_equal(tile(a, 2), [0, 1, 2, 0, 1, 2]) assert_equal(tile(a, (2, 2)), [[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]]) assert_equal(tile(a, (1, 2)), [[0, 1, 2, 0, 1, 2]]) assert_equal(tile(b, 2), [[1, 2, 1, 2], [3, 4, 3, 4]]) assert_equal(tile(b, (2, 1)), [[1, 2], [3, 4], [1, 2], [3, 4]]) assert_equal(tile(b, (2, 2)), [[1, 2, 1, 2], [3, 4, 3, 4], [1, 2, 1, 2], [3, 4, 3, 4]]) def test_tile_one_repetition_on_array_gh4679(self): a = np.arange(5) b = tile(a, 1) b += 2 assert_equal(a, np.arange(5)) def test_empty(self): a = np.array([[[]]]) b = np.array([[], []]) c = tile(b, 2).shape d = tile(a, (3, 2, 5)).shape assert_equal(c, (2, 0)) assert_equal(d, (3, 2, 0)) def test_kroncompare(self): from numpy.random import randint reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)] shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)] for s in shape: b = randint(0, 10, size=s) for r in reps: a = np.ones(r, b.dtype) large = tile(b, r) klarge = kron(a, b) assert_equal(large, klarge) class TestMayShareMemory(TestCase): def test_basic(self): d = np.ones((50, 60)) d2 = np.ones((30, 60, 6)) self.assertTrue(np.may_share_memory(d, d)) self.assertTrue(np.may_share_memory(d, d[::-1])) self.assertTrue(np.may_share_memory(d, d[::2])) self.assertTrue(np.may_share_memory(d, d[1:, ::-1])) self.assertFalse(np.may_share_memory(d[::-1], d2)) self.assertFalse(np.may_share_memory(d[::2], d2)) self.assertFalse(np.may_share_memory(d[1:, ::-1], d2)) self.assertTrue(np.may_share_memory(d2[1:, ::-1], d2)) # Utility def compare_results(res, desired): for i in range(len(desired)): assert_array_equal(res[i], desired[i]) if __name__ == "__main__": run_module_suite()