D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
opt
/
alt
/
python37
/
lib64
/
python3.7
/
site-packages
/
numpy
/
lib
/
tests
/
Filename :
test_index_tricks.py
back
Copy
from __future__ import division, absolute_import, print_function import numpy as np from numpy.testing import ( run_module_suite, TestCase, assert_, assert_equal, assert_array_equal, assert_almost_equal, assert_array_almost_equal, assert_raises ) from numpy.lib.index_tricks import ( mgrid, ndenumerate, fill_diagonal, diag_indices, diag_indices_from, index_exp, ndindex, r_, s_, ix_ ) class TestRavelUnravelIndex(TestCase): def test_basic(self): assert_equal(np.unravel_index(2, (2, 2)), (1, 0)) assert_equal(np.ravel_multi_index((1, 0), (2, 2)), 2) assert_equal(np.unravel_index(254, (17, 94)), (2, 66)) assert_equal(np.ravel_multi_index((2, 66), (17, 94)), 254) assert_raises(ValueError, np.unravel_index, -1, (2, 2)) assert_raises(TypeError, np.unravel_index, 0.5, (2, 2)) assert_raises(ValueError, np.unravel_index, 4, (2, 2)) assert_raises(ValueError, np.ravel_multi_index, (-3, 1), (2, 2)) assert_raises(ValueError, np.ravel_multi_index, (2, 1), (2, 2)) assert_raises(ValueError, np.ravel_multi_index, (0, -3), (2, 2)) assert_raises(ValueError, np.ravel_multi_index, (0, 2), (2, 2)) assert_raises(TypeError, np.ravel_multi_index, (0.1, 0.), (2, 2)) assert_equal(np.unravel_index((2*3 + 1)*6 + 4, (4, 3, 6)), [2, 1, 4]) assert_equal( np.ravel_multi_index([2, 1, 4], (4, 3, 6)), (2*3 + 1)*6 + 4) arr = np.array([[3, 6, 6], [4, 5, 1]]) assert_equal(np.ravel_multi_index(arr, (7, 6)), [22, 41, 37]) assert_equal( np.ravel_multi_index(arr, (7, 6), order='F'), [31, 41, 13]) assert_equal( np.ravel_multi_index(arr, (4, 6), mode='clip'), [22, 23, 19]) assert_equal(np.ravel_multi_index(arr, (4, 4), mode=('clip', 'wrap')), [12, 13, 13]) assert_equal(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)), 1621) assert_equal(np.unravel_index(np.array([22, 41, 37]), (7, 6)), [[3, 6, 6], [4, 5, 1]]) assert_equal( np.unravel_index(np.array([31, 41, 13]), (7, 6), order='F'), [[3, 6, 6], [4, 5, 1]]) assert_equal(np.unravel_index(1621, (6, 7, 8, 9)), [3, 1, 4, 1]) def test_big_indices(self): # ravel_multi_index for big indices (issue #7546) if np.intp == np.int64: arr = ([1, 29], [3, 5], [3, 117], [19, 2], [2379, 1284], [2, 2], [0, 1]) assert_equal( np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)), [5627771580, 117259570957]) # test overflow checking for too big array (issue #7546) dummy_arr = ([0],[0]) half_max = np.iinfo(np.intp).max // 2 assert_equal( np.ravel_multi_index(dummy_arr, (half_max, 2)), [0]) assert_raises(ValueError, np.ravel_multi_index, dummy_arr, (half_max+1, 2)) assert_equal( np.ravel_multi_index(dummy_arr, (half_max, 2), order='F'), [0]) assert_raises(ValueError, np.ravel_multi_index, dummy_arr, (half_max+1, 2), order='F') def test_dtypes(self): # Test with different data types for dtype in [np.int16, np.uint16, np.int32, np.uint32, np.int64, np.uint64]: coords = np.array( [[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0]], dtype=dtype) shape = (5, 8) uncoords = 8*coords[0]+coords[1] assert_equal(np.ravel_multi_index(coords, shape), uncoords) assert_equal(coords, np.unravel_index(uncoords, shape)) uncoords = coords[0]+5*coords[1] assert_equal( np.ravel_multi_index(coords, shape, order='F'), uncoords) assert_equal(coords, np.unravel_index(uncoords, shape, order='F')) coords = np.array( [[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0], [1, 3, 1, 0, 9, 5]], dtype=dtype) shape = (5, 8, 10) uncoords = 10*(8*coords[0]+coords[1])+coords[2] assert_equal(np.ravel_multi_index(coords, shape), uncoords) assert_equal(coords, np.unravel_index(uncoords, shape)) uncoords = coords[0]+5*(coords[1]+8*coords[2]) assert_equal( np.ravel_multi_index(coords, shape, order='F'), uncoords) assert_equal(coords, np.unravel_index(uncoords, shape, order='F')) def test_clipmodes(self): # Test clipmodes assert_equal( np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12), mode='wrap'), np.ravel_multi_index([1, 1, 6, 2], (4, 3, 7, 12))) assert_equal(np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12), mode=( 'wrap', 'raise', 'clip', 'raise')), np.ravel_multi_index([1, 1, 0, 2], (4, 3, 7, 12))) assert_raises( ValueError, np.ravel_multi_index, [5, 1, -1, 2], (4, 3, 7, 12)) def test_writeability(self): # See gh-7269 x, y = np.unravel_index([1, 2, 3], (4, 5)) self.assertTrue(x.flags.writeable) self.assertTrue(y.flags.writeable) class TestGrid(TestCase): def test_basic(self): a = mgrid[-1:1:10j] b = mgrid[-1:1:0.1] assert_(a.shape == (10,)) assert_(b.shape == (20,)) assert_(a[0] == -1) assert_almost_equal(a[-1], 1) assert_(b[0] == -1) assert_almost_equal(b[1]-b[0], 0.1, 11) assert_almost_equal(b[-1], b[0]+19*0.1, 11) assert_almost_equal(a[1]-a[0], 2.0/9.0, 11) def test_linspace_equivalence(self): y, st = np.linspace(2, 10, retstep=1) assert_almost_equal(st, 8/49.0) assert_array_almost_equal(y, mgrid[2:10:50j], 13) def test_nd(self): c = mgrid[-1:1:10j, -2:2:10j] d = mgrid[-1:1:0.1, -2:2:0.2] assert_(c.shape == (2, 10, 10)) assert_(d.shape == (2, 20, 20)) assert_array_equal(c[0][0, :], -np.ones(10, 'd')) assert_array_equal(c[1][:, 0], -2*np.ones(10, 'd')) assert_array_almost_equal(c[0][-1, :], np.ones(10, 'd'), 11) assert_array_almost_equal(c[1][:, -1], 2*np.ones(10, 'd'), 11) assert_array_almost_equal(d[0, 1, :] - d[0, 0, :], 0.1*np.ones(20, 'd'), 11) assert_array_almost_equal(d[1, :, 1] - d[1, :, 0], 0.2*np.ones(20, 'd'), 11) class TestConcatenator(TestCase): def test_1d(self): assert_array_equal(r_[1, 2, 3, 4, 5, 6], np.array([1, 2, 3, 4, 5, 6])) b = np.ones(5) c = r_[b, 0, 0, b] assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1]) def test_mixed_type(self): g = r_[10.1, 1:10] assert_(g.dtype == 'f8') def test_more_mixed_type(self): g = r_[-10.1, np.array([1]), np.array([2, 3, 4]), 10.0] assert_(g.dtype == 'f8') def test_2d(self): b = np.random.rand(5, 5) c = np.random.rand(5, 5) d = r_['1', b, c] # append columns assert_(d.shape == (5, 10)) assert_array_equal(d[:, :5], b) assert_array_equal(d[:, 5:], c) d = r_[b, c] assert_(d.shape == (10, 5)) assert_array_equal(d[:5, :], b) assert_array_equal(d[5:, :], c) def test_matrix(self): a = [1, 2] b = [3, 4] ab_r = np.r_['r', a, b] ab_c = np.r_['c', a, b] assert_equal(type(ab_r), np.matrix) assert_equal(type(ab_c), np.matrix) assert_equal(np.array(ab_r), [[1,2,3,4]]) assert_equal(np.array(ab_c), [[1],[2],[3],[4]]) assert_raises(ValueError, lambda: np.r_['rc', a, b]) def test_matrix_scalar(self): r = np.r_['r', [1, 2], 3] assert_equal(type(r), np.matrix) assert_equal(np.array(r), [[1,2,3]]) def test_matrix_builder(self): a = np.array([1]) b = np.array([2]) c = np.array([3]) d = np.array([4]) actual = np.r_['a, b; c, d'] expected = np.bmat([[a, b], [c, d]]) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) class TestNdenumerate(TestCase): def test_basic(self): a = np.array([[1, 2], [3, 4]]) assert_equal(list(ndenumerate(a)), [((0, 0), 1), ((0, 1), 2), ((1, 0), 3), ((1, 1), 4)]) class TestIndexExpression(TestCase): def test_regression_1(self): # ticket #1196 a = np.arange(2) assert_equal(a[:-1], a[s_[:-1]]) assert_equal(a[:-1], a[index_exp[:-1]]) def test_simple_1(self): a = np.random.rand(4, 5, 6) assert_equal(a[:, :3, [1, 2]], a[index_exp[:, :3, [1, 2]]]) assert_equal(a[:, :3, [1, 2]], a[s_[:, :3, [1, 2]]]) class TestIx_(TestCase): def test_regression_1(self): # Test empty inputs create ouputs of indexing type, gh-5804 # Test both lists and arrays for func in (range, np.arange): a, = np.ix_(func(0)) assert_equal(a.dtype, np.intp) def test_shape_and_dtype(self): sizes = (4, 5, 3, 2) # Test both lists and arrays for func in (range, np.arange): arrays = np.ix_(*[func(sz) for sz in sizes]) for k, (a, sz) in enumerate(zip(arrays, sizes)): assert_equal(a.shape[k], sz) assert_(all(sh == 1 for j, sh in enumerate(a.shape) if j != k)) assert_(np.issubdtype(a.dtype, int)) def test_bool(self): bool_a = [True, False, True, True] int_a, = np.nonzero(bool_a) assert_equal(np.ix_(bool_a)[0], int_a) def test_1d_only(self): idx2d = [[1, 2, 3], [4, 5, 6]] assert_raises(ValueError, np.ix_, idx2d) def test_repeated_input(self): length_of_vector = 5 x = np.arange(length_of_vector) out = ix_(x, x) assert_equal(out[0].shape, (length_of_vector, 1)) assert_equal(out[1].shape, (1, length_of_vector)) # check that input shape is not modified assert_equal(x.shape, (length_of_vector,)) def test_c_(): a = np.c_[np.array([[1, 2, 3]]), 0, 0, np.array([[4, 5, 6]])] assert_equal(a, [[1, 2, 3, 0, 0, 4, 5, 6]]) def test_fill_diagonal(): a = np.zeros((3, 3), int) fill_diagonal(a, 5) yield (assert_array_equal, a, np.array([[5, 0, 0], [0, 5, 0], [0, 0, 5]])) #Test tall matrix a = np.zeros((10, 3), int) fill_diagonal(a, 5) yield (assert_array_equal, a, np.array([[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]])) #Test tall matrix wrap a = np.zeros((10, 3), int) fill_diagonal(a, 5, True) yield (assert_array_equal, a, np.array([[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0], [5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0], [5, 0, 0], [0, 5, 0]])) #Test wide matrix a = np.zeros((3, 10), int) fill_diagonal(a, 5) yield (assert_array_equal, a, np.array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 5, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 5, 0, 0, 0, 0, 0, 0, 0]])) # The same function can operate on a 4-d array: a = np.zeros((3, 3, 3, 3), int) fill_diagonal(a, 4) i = np.array([0, 1, 2]) yield (assert_equal, np.where(a != 0), (i, i, i, i)) def test_diag_indices(): di = diag_indices(4) a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]) a[di] = 100 yield (assert_array_equal, a, np.array([[100, 2, 3, 4], [5, 100, 7, 8], [9, 10, 100, 12], [13, 14, 15, 100]])) # Now, we create indices to manipulate a 3-d array: d3 = diag_indices(2, 3) # And use it to set the diagonal of a zeros array to 1: a = np.zeros((2, 2, 2), int) a[d3] = 1 yield (assert_array_equal, a, np.array([[[1, 0], [0, 0]], [[0, 0], [0, 1]]])) def test_diag_indices_from(): x = np.random.random((4, 4)) r, c = diag_indices_from(x) assert_array_equal(r, np.arange(4)) assert_array_equal(c, np.arange(4)) def test_ndindex(): x = list(ndindex(1, 2, 3)) expected = [ix for ix, e in ndenumerate(np.zeros((1, 2, 3)))] assert_array_equal(x, expected) x = list(ndindex((1, 2, 3))) assert_array_equal(x, expected) # Test use of scalars and tuples x = list(ndindex((3,))) assert_array_equal(x, list(ndindex(3))) # Make sure size argument is optional x = list(ndindex()) assert_equal(x, [()]) x = list(ndindex(())) assert_equal(x, [()]) # Make sure 0-sized ndindex works correctly x = list(ndindex(*[0])) assert_equal(x, []) if __name__ == "__main__": run_module_suite()