D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
opt
/
alt
/
python37
/
lib64
/
python3.7
/
site-packages
/
numpy
/
lib
/
tests
/
Filename :
test_arraysetops.py
back
Copy
"""Test functions for 1D array set operations. """ from __future__ import division, absolute_import, print_function import numpy as np from numpy.testing import ( run_module_suite, TestCase, assert_array_equal, assert_equal, assert_raises ) from numpy.lib.arraysetops import ( ediff1d, intersect1d, setxor1d, union1d, setdiff1d, unique, in1d, isin ) class TestSetOps(TestCase): def test_intersect1d(self): # unique inputs a = np.array([5, 7, 1, 2]) b = np.array([2, 4, 3, 1, 5]) ec = np.array([1, 2, 5]) c = intersect1d(a, b, assume_unique=True) assert_array_equal(c, ec) # non-unique inputs a = np.array([5, 5, 7, 1, 2]) b = np.array([2, 1, 4, 3, 3, 1, 5]) ed = np.array([1, 2, 5]) c = intersect1d(a, b) assert_array_equal(c, ed) assert_array_equal([], intersect1d([], [])) def test_setxor1d(self): a = np.array([5, 7, 1, 2]) b = np.array([2, 4, 3, 1, 5]) ec = np.array([3, 4, 7]) c = setxor1d(a, b) assert_array_equal(c, ec) a = np.array([1, 2, 3]) b = np.array([6, 5, 4]) ec = np.array([1, 2, 3, 4, 5, 6]) c = setxor1d(a, b) assert_array_equal(c, ec) a = np.array([1, 8, 2, 3]) b = np.array([6, 5, 4, 8]) ec = np.array([1, 2, 3, 4, 5, 6]) c = setxor1d(a, b) assert_array_equal(c, ec) assert_array_equal([], setxor1d([], [])) def test_ediff1d(self): zero_elem = np.array([]) one_elem = np.array([1]) two_elem = np.array([1, 2]) assert_array_equal([], ediff1d(zero_elem)) assert_array_equal([0], ediff1d(zero_elem, to_begin=0)) assert_array_equal([0], ediff1d(zero_elem, to_end=0)) assert_array_equal([-1, 0], ediff1d(zero_elem, to_begin=-1, to_end=0)) assert_array_equal([], ediff1d(one_elem)) assert_array_equal([1], ediff1d(two_elem)) assert_array_equal([7,1,9], ediff1d(two_elem, to_begin=7, to_end=9)) assert_array_equal([5,6,1,7,8], ediff1d(two_elem, to_begin=[5,6], to_end=[7,8])) assert_array_equal([1,9], ediff1d(two_elem, to_end=9)) assert_array_equal([1,7,8], ediff1d(two_elem, to_end=[7,8])) assert_array_equal([7,1], ediff1d(two_elem, to_begin=7)) assert_array_equal([5,6,1], ediff1d(two_elem, to_begin=[5,6])) assert(isinstance(ediff1d(np.matrix(1)), np.matrix)) assert(isinstance(ediff1d(np.matrix(1), to_begin=1), np.matrix)) def test_isin(self): # the tests for in1d cover most of isin's behavior # if in1d is removed, would need to change those tests to test # isin instead. def _isin_slow(a, b): b = np.asarray(b).flatten().tolist() return a in b isin_slow = np.vectorize(_isin_slow, otypes=[bool], excluded={1}) def assert_isin_equal(a, b): x = isin(a, b) y = isin_slow(a, b) assert_array_equal(x, y) #multidimensional arrays in both arguments a = np.arange(24).reshape([2, 3, 4]) b = np.array([[10, 20, 30], [0, 1, 3], [11, 22, 33]]) assert_isin_equal(a, b) #array-likes as both arguments c = [(9, 8), (7, 6)] d = (9, 7) assert_isin_equal(c, d) #zero-d array: f = np.array(3) assert_isin_equal(f, b) assert_isin_equal(a, f) assert_isin_equal(f, f) #scalar: assert_isin_equal(5, b) assert_isin_equal(a, 6) assert_isin_equal(5, 6) #empty array-like: x = [] assert_isin_equal(x, b) assert_isin_equal(a, x) assert_isin_equal(x, x) def test_in1d(self): # we use two different sizes for the b array here to test the # two different paths in in1d(). for mult in (1, 10): # One check without np.array to make sure lists are handled correct a = [5, 7, 1, 2] b = [2, 4, 3, 1, 5] * mult ec = np.array([True, False, True, True]) c = in1d(a, b, assume_unique=True) assert_array_equal(c, ec) a[0] = 8 ec = np.array([False, False, True, True]) c = in1d(a, b, assume_unique=True) assert_array_equal(c, ec) a[0], a[3] = 4, 8 ec = np.array([True, False, True, False]) c = in1d(a, b, assume_unique=True) assert_array_equal(c, ec) a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5]) b = [2, 3, 4] * mult ec = [False, True, False, True, True, True, True, True, True, False, True, False, False, False] c = in1d(a, b) assert_array_equal(c, ec) b = b + [5, 5, 4] * mult ec = [True, True, True, True, True, True, True, True, True, True, True, False, True, True] c = in1d(a, b) assert_array_equal(c, ec) a = np.array([5, 7, 1, 2]) b = np.array([2, 4, 3, 1, 5] * mult) ec = np.array([True, False, True, True]) c = in1d(a, b) assert_array_equal(c, ec) a = np.array([5, 7, 1, 1, 2]) b = np.array([2, 4, 3, 3, 1, 5] * mult) ec = np.array([True, False, True, True, True]) c = in1d(a, b) assert_array_equal(c, ec) a = np.array([5, 5]) b = np.array([2, 2] * mult) ec = np.array([False, False]) c = in1d(a, b) assert_array_equal(c, ec) a = np.array([5]) b = np.array([2]) ec = np.array([False]) c = in1d(a, b) assert_array_equal(c, ec) assert_array_equal(in1d([], []), []) def test_in1d_char_array(self): a = np.array(['a', 'b', 'c', 'd', 'e', 'c', 'e', 'b']) b = np.array(['a', 'c']) ec = np.array([True, False, True, False, False, True, False, False]) c = in1d(a, b) assert_array_equal(c, ec) def test_in1d_invert(self): "Test in1d's invert parameter" # We use two different sizes for the b array here to test the # two different paths in in1d(). for mult in (1, 10): a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5]) b = [2, 3, 4] * mult assert_array_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True)) def test_in1d_ravel(self): # Test that in1d ravels its input arrays. This is not documented # behavior however. The test is to ensure consistentency. a = np.arange(6).reshape(2, 3) b = np.arange(3, 9).reshape(3, 2) long_b = np.arange(3, 63).reshape(30, 2) ec = np.array([False, False, False, True, True, True]) assert_array_equal(in1d(a, b, assume_unique=True), ec) assert_array_equal(in1d(a, b, assume_unique=False), ec) assert_array_equal(in1d(a, long_b, assume_unique=True), ec) assert_array_equal(in1d(a, long_b, assume_unique=False), ec) def test_union1d(self): a = np.array([5, 4, 7, 1, 2]) b = np.array([2, 4, 3, 3, 2, 1, 5]) ec = np.array([1, 2, 3, 4, 5, 7]) c = union1d(a, b) assert_array_equal(c, ec) assert_array_equal([], union1d([], [])) def test_setdiff1d(self): a = np.array([6, 5, 4, 7, 1, 2, 7, 4]) b = np.array([2, 4, 3, 3, 2, 1, 5]) ec = np.array([6, 7]) c = setdiff1d(a, b) assert_array_equal(c, ec) a = np.arange(21) b = np.arange(19) ec = np.array([19, 20]) c = setdiff1d(a, b) assert_array_equal(c, ec) assert_array_equal([], setdiff1d([], [])) a = np.array((), np.uint32) assert_equal(setdiff1d(a, []).dtype, np.uint32) def test_setdiff1d_char_array(self): a = np.array(['a', 'b', 'c']) b = np.array(['a', 'b', 's']) assert_array_equal(setdiff1d(a, b), np.array(['c'])) def test_manyways(self): a = np.array([5, 7, 1, 2, 8]) b = np.array([9, 8, 2, 4, 3, 1, 5]) c1 = setxor1d(a, b) aux1 = intersect1d(a, b) aux2 = union1d(a, b) c2 = setdiff1d(aux2, aux1) assert_array_equal(c1, c2) class TestUnique(TestCase): def test_unique_1d(self): def check_all(a, b, i1, i2, c, dt): base_msg = 'check {0} failed for type {1}' msg = base_msg.format('values', dt) v = unique(a) assert_array_equal(v, b, msg) msg = base_msg.format('return_index', dt) v, j = unique(a, 1, 0, 0) assert_array_equal(v, b, msg) assert_array_equal(j, i1, msg) msg = base_msg.format('return_inverse', dt) v, j = unique(a, 0, 1, 0) assert_array_equal(v, b, msg) assert_array_equal(j, i2, msg) msg = base_msg.format('return_counts', dt) v, j = unique(a, 0, 0, 1) assert_array_equal(v, b, msg) assert_array_equal(j, c, msg) msg = base_msg.format('return_index and return_inverse', dt) v, j1, j2 = unique(a, 1, 1, 0) assert_array_equal(v, b, msg) assert_array_equal(j1, i1, msg) assert_array_equal(j2, i2, msg) msg = base_msg.format('return_index and return_counts', dt) v, j1, j2 = unique(a, 1, 0, 1) assert_array_equal(v, b, msg) assert_array_equal(j1, i1, msg) assert_array_equal(j2, c, msg) msg = base_msg.format('return_inverse and return_counts', dt) v, j1, j2 = unique(a, 0, 1, 1) assert_array_equal(v, b, msg) assert_array_equal(j1, i2, msg) assert_array_equal(j2, c, msg) msg = base_msg.format(('return_index, return_inverse ' 'and return_counts'), dt) v, j1, j2, j3 = unique(a, 1, 1, 1) assert_array_equal(v, b, msg) assert_array_equal(j1, i1, msg) assert_array_equal(j2, i2, msg) assert_array_equal(j3, c, msg) a = [5, 7, 1, 2, 1, 5, 7]*10 b = [1, 2, 5, 7] i1 = [2, 3, 0, 1] i2 = [2, 3, 0, 1, 0, 2, 3]*10 c = np.multiply([2, 1, 2, 2], 10) # test for numeric arrays types = [] types.extend(np.typecodes['AllInteger']) types.extend(np.typecodes['AllFloat']) types.append('datetime64[D]') types.append('timedelta64[D]') for dt in types: aa = np.array(a, dt) bb = np.array(b, dt) check_all(aa, bb, i1, i2, c, dt) # test for object arrays dt = 'O' aa = np.empty(len(a), dt) aa[:] = a bb = np.empty(len(b), dt) bb[:] = b check_all(aa, bb, i1, i2, c, dt) # test for structured arrays dt = [('', 'i'), ('', 'i')] aa = np.array(list(zip(a, a)), dt) bb = np.array(list(zip(b, b)), dt) check_all(aa, bb, i1, i2, c, dt) # test for ticket #2799 aa = [1. + 0.j, 1 - 1.j, 1] assert_array_equal(np.unique(aa), [1. - 1.j, 1. + 0.j]) # test for ticket #4785 a = [(1, 2), (1, 2), (2, 3)] unq = [1, 2, 3] inv = [0, 1, 0, 1, 1, 2] a1 = unique(a) assert_array_equal(a1, unq) a2, a2_inv = unique(a, return_inverse=True) assert_array_equal(a2, unq) assert_array_equal(a2_inv, inv) # test for chararrays with return_inverse (gh-5099) a = np.chararray(5) a[...] = '' a2, a2_inv = np.unique(a, return_inverse=True) assert_array_equal(a2_inv, np.zeros(5)) def test_unique_axis_errors(self): assert_raises(TypeError, self._run_axis_tests, object) assert_raises(TypeError, self._run_axis_tests, [('a', int), ('b', object)]) assert_raises(ValueError, unique, np.arange(10), axis=2) assert_raises(ValueError, unique, np.arange(10), axis=-2) def test_unique_axis_list(self): msg = "Unique failed on list of lists" inp = [[0, 1, 0], [0, 1, 0]] inp_arr = np.asarray(inp) assert_array_equal(unique(inp, axis=0), unique(inp_arr, axis=0), msg) assert_array_equal(unique(inp, axis=1), unique(inp_arr, axis=1), msg) def test_unique_axis(self): types = [] types.extend(np.typecodes['AllInteger']) types.extend(np.typecodes['AllFloat']) types.append('datetime64[D]') types.append('timedelta64[D]') types.append([('a', int), ('b', int)]) types.append([('a', int), ('b', float)]) for dtype in types: self._run_axis_tests(dtype) msg = 'Non-bitwise-equal booleans test failed' data = np.arange(10, dtype=np.uint8).reshape(-1, 2).view(bool) result = np.array([[False, True], [True, True]], dtype=bool) assert_array_equal(unique(data, axis=0), result, msg) msg = 'Negative zero equality test failed' data = np.array([[-0.0, 0.0], [0.0, -0.0], [-0.0, 0.0], [0.0, -0.0]]) result = np.array([[-0.0, 0.0]]) assert_array_equal(unique(data, axis=0), result, msg) def test_unique_masked(self): # issue 8664 x = np.array([64, 0, 1, 2, 3, 63, 63, 0, 0, 0, 1, 2, 0, 63, 0], dtype='uint8') y = np.ma.masked_equal(x, 0) v = np.unique(y) v2, i, c = np.unique(y, return_index=True, return_counts=True) msg = 'Unique returned different results when asked for index' assert_array_equal(v.data, v2.data, msg) assert_array_equal(v.mask, v2.mask, msg) def _run_axis_tests(self, dtype): data = np.array([[0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0]]).astype(dtype) msg = 'Unique with 1d array and axis=0 failed' result = np.array([0, 1]) assert_array_equal(unique(data), result.astype(dtype), msg) msg = 'Unique with 2d array and axis=0 failed' result = np.array([[0, 1, 0, 0], [1, 0, 0, 0]]) assert_array_equal(unique(data, axis=0), result.astype(dtype), msg) msg = 'Unique with 2d array and axis=1 failed' result = np.array([[0, 0, 1], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) assert_array_equal(unique(data, axis=1), result.astype(dtype), msg) msg = 'Unique with 3d array and axis=2 failed' data3d = np.dstack([data] * 3) result = data3d[..., :1] assert_array_equal(unique(data3d, axis=2), result, msg) uniq, idx, inv, cnt = unique(data, axis=0, return_index=True, return_inverse=True, return_counts=True) msg = "Unique's return_index=True failed with axis=0" assert_array_equal(data[idx], uniq, msg) msg = "Unique's return_inverse=True failed with axis=0" assert_array_equal(uniq[inv], data) msg = "Unique's return_counts=True failed with axis=0" assert_array_equal(cnt, np.array([2, 2]), msg) uniq, idx, inv, cnt = unique(data, axis=1, return_index=True, return_inverse=True, return_counts=True) msg = "Unique's return_index=True failed with axis=1" assert_array_equal(data[:, idx], uniq) msg = "Unique's return_inverse=True failed with axis=1" assert_array_equal(uniq[:, inv], data) msg = "Unique's return_counts=True failed with axis=1" assert_array_equal(cnt, np.array([2, 1, 1]), msg) if __name__ == "__main__": run_module_suite()